class documentation

Torch implementation of CLIP from https://github.com/openai/CLIP.

Parameters
configa TorchCLIPModelConfig
Method __init__ Undocumented
Method embed_prompt Generates an embedding for the given text prompt.
Method embed_prompts Generates an embedding for the given text prompts.
Property can_embed_prompts Whether this instance can generate prompt embeddings.
Method _download_model Undocumented
Method _embed_prompts Undocumented
Method _get_class_logits Undocumented
Method _get_text_features Undocumented
Method _load_model Undocumented
Method _predict_all Applies a forward pass to the given iterable of data and returns the raw model output with no processing applied.
Instance Variable _text_features Undocumented
Instance Variable _tokenizer Undocumented

Inherited from TorchImageModel:

Method __enter__ Undocumented
Method __exit__ Undocumented
Method predict Performs prediction on the given image.
Method predict_all Performs prediction on the given batch of images.
Method preprocess.setter Undocumented
Instance Variable config Undocumented
Property classes The list of class labels for the model, if known.
Property device The torch:torch.torch.device that the model is using.
Property has_logits Whether this instance can generate logits.
Property mask_targets The mask targets for the model, if any.
Property media_type The media type processed by the model.
Property num_classes The number of classes for the model, if known.
Property preprocess Whether to apply preprocessing transforms for inference, if any.
Property ragged_batches Whether transforms may return tensors of different sizes. If True, then passing ragged lists of images to predict_all may not be not allowed.
Property skeleton The keypoint skeleton for the model, if any.
Property transforms A torchvision.transforms function that will be applied to each input before prediction, if any.
Property using_gpu Whether the model is using GPU.
Property using_half_precision Whether the model is using half precision.
Method _build_output_processor Undocumented
Method _build_transforms Undocumented
Method _forward_pass Undocumented
Method _load_transforms Undocumented
Method _parse_classes Undocumented
Method _parse_mask_targets Undocumented
Method _parse_skeleton Undocumented
Instance Variable _benchmark_orig Undocumented
Instance Variable _classes Undocumented
Instance Variable _device Undocumented
Instance Variable _mask_targets Undocumented
Instance Variable _model Undocumented
Instance Variable _no_grad Undocumented
Instance Variable _output_processor Undocumented
Instance Variable _preprocess Undocumented
Instance Variable _ragged_batches Undocumented
Instance Variable _skeleton Undocumented
Instance Variable _transforms Undocumented
Instance Variable _using_gpu Undocumented
Instance Variable _using_half_precision Undocumented

Inherited from TorchEmbeddingsMixin (via TorchImageModel):

Method embed Generates an embedding for the given data.
Method embed_all Generates embeddings for the given iterable of data.
Method get_embeddings Returns the embeddings generated by the last forward pass of the model.
Property has_embeddings Whether this instance has embeddings.
Instance Variable _as_feature_extractor Undocumented
Instance Variable _embeddings_layer Undocumented

Inherited from LogitsMixin (via TorchImageModel, TorchEmbeddingsMixin, EmbeddingsMixin, TorchModelMixin):

Method store_logits.setter Undocumented
Property store_logits Whether the model should store logits in its predictions.
Instance Variable _store_logits Undocumented
def __init__(self, config): (source)
def embed_prompt(self, prompt): (source)

Generates an embedding for the given text prompt.

Parameters
prompta text string
Returns
a numpy vector
def embed_prompts(self, prompts): (source)

Generates an embedding for the given text prompts.

Parameters
promptsan iterable of text strings
Returns
a num_prompts x num_dims array of prompt embeddings
@property
can_embed_prompts = (source)

Whether this instance can generate prompt embeddings.

def _download_model(self, config): (source)
def _embed_prompts(self, prompts): (source)

Undocumented

def _get_class_logits(self, text_features, image_features): (source)

Undocumented

def _get_text_features(self): (source)

Undocumented

def _load_model(self, config): (source)
def _predict_all(self, imgs): (source)

Applies a forward pass to the given iterable of data and returns the raw model output with no processing applied.

Parameters
imgsUndocumented
argsan iterable of data. See predict_all for details
Returns
the raw output of the model
_text_features = (source)

Undocumented

_tokenizer = (source)

Undocumented