class documentation

Class that stores the results of an Open Images detection evaluation.

Parameters
samplesthe fiftyone.core.collections.SampleCollection used
configthe OpenImagesEvaluationConfig used
eval_keythe evaluation key
matchesa list of (gt_label, pred_label, iou, pred_confidence, gt_id, pred_id) matches. Either label can be None to indicate an unmatched object
precisiona dict of per-class precision values
recalla dict of per-class recall values
classesthe list of possible classes
thresholdsan optional dict of per-class decision thresholds
missinga missing label string. Any unmatched objects are given this label for evaluation purposes
custom_metricsan optional dict of custom metrics
backenda OpenImagesEvaluation backend
Method __init__ Undocumented
Method mAP Computes Open Images-style mean average precision (mAP) for the specified classes.
Method plot_pr_curves Plots precision-recall (PR) curves for the detection results.
Instance Variable precision Undocumented
Instance Variable recall Undocumented
Instance Variable thresholds Undocumented
Class Method _from_dict Subclass implementation of from_dict.
Method _validate_classes Undocumented
Instance Variable _classwise_AP Undocumented

Inherited from DetectionResults:

Instance Variable ious Undocumented

Inherited from BaseClassificationResults (via DetectionResults):

Method confusion_matrix Generates a confusion matrix for the results via sklearn:sklearn.metrics.confusion_matrix.
Method metrics Computes classification metrics for the results, including accuracy, precision, recall, and F-beta score.
Method plot_confusion_matrix Plots a confusion matrix for the evaluation results.
Method print_metrics Prints the metrics computed via metrics.
Method print_report Prints a classification report for the results via sklearn:sklearn.metrics.classification_report.
Method report Generates a classification report for the results via sklearn:sklearn.metrics.classification_report.
Instance Variable confs Undocumented
Instance Variable weights Undocumented
Instance Variable ypred Undocumented
Instance Variable ypred_ids Undocumented
Instance Variable ytrue Undocumented
Instance Variable ytrue_ids Undocumented
Method _confusion_matrix Undocumented
Method _parse_classes Undocumented

Inherited from BaseEvaluationResults (via DetectionResults, BaseClassificationResults):

Method add_custom_metrics Computes the given custom metrics and adds them to these results.
Method _get_custom_metrics Undocumented
Method _print_metrics Undocumented

Inherited from BaseRunResults (via DetectionResults, BaseClassificationResults, BaseEvaluationResults, EvaluationResults):

Class Method from_dict Builds a BaseRunResults from a JSON dict representation of it.
Static Method base_results_cls Returns the results class for the given run type.
Method attributes Returns the list of class attributes that will be serialized by serialize.
Method save Saves the results to the database.
Method save_config Saves these results config to the database.
Property cls The fully-qualified name of this BaseRunResults class.
Property config The BaseRunConfig for these results.
Property key The run key for these results.
Property samples The fiftyone.core.collections.SampleCollection associated with these results.
Instance Variable _backend Undocumented
Instance Variable _config Undocumented
Instance Variable _key Undocumented
Instance Variable _samples Undocumented
def __init__(self, samples, config, eval_key, matches, precision, recall, classes, thresholds=None, missing=None, custom_metrics=None, backend=None): (source)
def mAP(self, classes=None): (source)

Computes Open Images-style mean average precision (mAP) for the specified classes.

See this page for more details about Open Images-style mAP.

Parameters
classes:Nonea list of classes for which to compute mAP
Returns
the mAP in [0, 1]
def plot_pr_curves(self, classes=None, num_points=101, backend='plotly', **kwargs): (source)

Plots precision-recall (PR) curves for the detection results.

Parameters
classes:Nonea list of classes to generate curves for. By default, the top 3 AP classes will be plotted
num_points:101the number of linearly spaced recall values to plot
backend:"plotly"the plotting backend to use. Supported values are ("plotly", "matplotlib")
**kwargs

keyword arguments for the backend plotting method:

Returns
one of the following
precision = (source)

Undocumented

Undocumented

thresholds: None = (source)

Undocumented

@classmethod
def _from_dict(cls, d, samples, config, eval_key, **kwargs): (source)

Subclass implementation of from_dict.

Parameters
da JSON dict
samplesthe fiftyone.core.collections.SampleCollection for the run
configthe BaseRunConfig for the run
eval_keyUndocumented
keythe run key
**kwargsUndocumented
Returns
a BaseRunResults
def _validate_classes(self, classes): (source)

Undocumented

_classwise_AP: dict = (source)

Undocumented